Mia's Feed
Medical News & Research

Proteins Regulating NMDA Receptor Function Offer New Hope for Autism Treatments

Proteins Regulating NMDA Receptor Function Offer New Hope for Autism Treatments

Share this article

A groundbreaking study uncovers how proteins like MDGA2 and EphB2 regulate NMDA receptor activity, paving the way for targeted autism treatments and better understanding of synaptic regulation in the brain.

2 min read

A research team has uncovered a detailed molecular mechanism that controls the activity of the NMDA (N-methyl-D-aspartate) glutamate receptor, a crucial component involved in excitatory synaptic transmission in the brain. This breakthrough could lead to the development of innovative, targeted therapies for neurological conditions such as autism spectrum disorder (ASD). The study, published in Progress in Neurobiology, was led by Professors Ko Jaewon and Um Ji Won from DGIST’s Center for Synapse Diversity and Specificity.

Synapses, the communication points between neurons, rely heavily on electrical signals, with NMDA receptors playing a vital role in shaping the intensity and duration of these signals. Dysregulation of NMDA receptor activity, whether excessive or diminished, can disrupt normal brain function, potentially contributing to neurodevelopmental disorders.

The team has identified 'switch proteins,' which directly inhibit NMDA receptor activity. Central to this discovery is the interaction between MDGA2, a MAM domain-containing glycosylphosphatidylinositol (GPI) anchor protein, and EphB2, a receptor tyrosine kinase that typically activates NMDA receptors. The researchers demonstrated that MDGA2 competitively binds to EphB2, preventing its activation of NMDA receptors, thereby serving as a molecular regulator.

Utilizing advanced AI-based protein structure prediction tools such as ColabFold, the scientists mapped the specific binding sites of MDGA2 and EphB2, highlighting targeted amino acid residues critical for their interaction. Cellular experiments confirmed that this interaction effectively inhibits NMDA receptor activation.

Since 2011, DGIST’s CSDS has been dedicated to exploring protein pathways that regulate synapse formation and function. Earlier studies suggested MDGA proteins inhibit synapse development, and recent research confirmed that knocking out MDGA1 and MDGA2 reduces synaptic density and neurotransmission efficiency. The latest findings elaborate on this by illustrating how MDGA2 specifically binds to EphB2 to inhibit NMDA receptors, thereby influencing excitatory synaptic transmission.

This insight provides a promising foundation for precise modulation of neural circuits. It also opens avenues for designing drugs that can normalize overactive synapses, which are often observed in autism, potentially reducing symptoms and side effects of existing treatments. Professor Um emphasized that MDGA2 functions as a conductor, coordinating excitatory synapse activity by disrupting key adhesion proteins, offering new strategies for intervention.

Looking ahead, researchers intend to extend their studies into preclinical models, emphasizing the relevance of EphB2 and MDGA2 in brain developmental disorders like autism spectrum disorder. These advancements could lead to the development of targeted therapies that regulate specific neural pathways, offering hope for improved management of neurodevelopmental conditions.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Unraveling the Genetic Diversity of Glioblastoma Tumors

A groundbreaking study reveals the extensive genomic heterogeneity within glioblastoma tumors, highlighting the importance of targeting shared abnormalities for more effective treatments. Source: Northwestern University, 2025.

Innovative Brain Imaging System Uses Upright PET and AR Eye Tracking to Enhance Cognitive Disorder Research

A new brain imaging platform combining upright PET with AR eye tracking is revolutionizing cognitive disorder research by providing more naturalistic insights into brain activity. This innovative system enhances early detection of neurodegenerative diseases like Alzheimer's and Parkinson's.

UK Estimated Annual Costs of Hand and Wrist Injuries in Dog Walkers Surpass £23 Million

A new review estimates that hand and wrist injuries from dog walking in the UK cost over £23 million annually, with older adults and women most affected. The study emphasizes safety practices to reduce injury risks.

Innovative mRNA Therapy Offers Hope for Heart Repair After Heart Attacks

A pioneering mRNA-based therapy targeting the PSAT1 gene shows promise in promoting heart repair after heart attacks, opening new possibilities for regenerative cardiovascular treatments.