Advanced Neuropixels Probe Enables Large-Scale Neural Recording in Non-Human Primates

A new high-density Neuropixels probe enables comprehensive, brain-wide neural recordings in non-human primates, advancing neuroscience research on large animal brains.
Recent advancements in neural recording technologies have significantly enhanced our ability to study complex brain functions in large animals, including non-human primates. A groundbreaking development is the Neuropixels 1.0 NHP probe, a high-density silicon device designed specifically for brain-wide neural monitoring in macaques and similar species. Unlike earlier probes limited by length and design, this new device features a 54-mm-long monolithic silicon shank with a width of 125 µm and a thickness of 90 µm, allowing direct access to deep brain structures.
Equipped with 4,416 recording sites distributed along its full length, the probe can target multiple brain regions simultaneously, with selectable 'banks' of 384 channels each, enabling high-resolution, multi-area neural recordings. Its design incorporates a sharpened, beveled tip to facilitate penetration through the tough primate dura mater, and the ability to switch between banks permits researchers to decouple probe positioning from data collection, optimizing neural survey efforts.
The device's fabrication involved innovative techniques such as stitching to produce larger-than-standard probes, stress compensation layers to prevent bending, and widened internal wires to reduce resistance and noise. These engineering solutions have made the probe not only more capable but also more cost-effective, with total system costs estimated between US$7,000 and US$15,000.
Researchers demonstrated the utility of the Neuropixels 1.0 NHP through various experiments, including large-scale visual cortical mapping, stable recordings during motor tasks across multiple structures, and even high-resolution recording from deep face patches during face recognition tasks. The ability to record single-neuron activity with high fidelity over multiple brain regions paves the way for more comprehensive and unbiased understandings of neural circuits.
Future developments aim at longer-term implantation and integration with intracortical microstimulation capabilities to further advance neurotechnological research. This technology promises to revolutionize investigations into large animal brains, enabling detailed electrophysiological mapping, connectivity studies, and real-time neural activity analysis, thus opening new horizons in neuroscience research.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Revolutionizing ECG Interpretation by Unlocking the Heart's Hidden Geometry
Scientists at King's College London have discovered how the heart's orientation influences ECG readings, paving the way for more personalized and accurate heart diagnostics using advanced digital twin models.
Autistic Adults Face Higher Risk of Hospital Readmission for Mental Health Conditions
Autistic adults are nearly 1.5 times more likely to experience hospital readmissions due to mental health conditions, highlighting gaps in accessible care and the need for tailored mental health services. A recent study emphasizes the importance of improved outpatient support to reduce repeat hospital visits.
How Sound Influences Brainwaves and Reshapes Neural Networks in Real Time
New research reveals how listening to sounds and music can actively induce real-time reorganization of brain networks, advancing our understanding of neural dynamics and connectivity.
New Research Highlights the Crucial Role of Astrocytes in Visual Processing
Groundbreaking research reveals that astrocytes, a type of non-neural brain cell, are vital for coordinating neuronal activity and processing visual information in the brain. This discovery underscores the importance of glial cells in neural function and could inform future neurological treatments.