Mia's Feed
Medical News & Research

Innovative Drug IHMT-15130 Targets Heart Muscle Thickening and Inflammation

Innovative Drug IHMT-15130 Targets Heart Muscle Thickening and Inflammation

Share this article

A novel compound, IHMT-15130, shows dual action in reducing heart muscle thickening and inflammation, offering new hope for cardiovascular therapies. Developed by Chinese researchers, it targets BMX kinase with high selectivity and efficacy in preclinical models.

2 min read

A team of researchers led by Professor Liu Qingsong from the Hefei Institutes of Physical Science, part of the Chinese Academy of Sciences, has developed a promising new compound known as IHMT-15130. This molecule acts as a highly selective and irreversible inhibitor of BMX kinase, an enzyme critically involved in inflammatory processes and cardiac hypertrophy. Preclinical studies have demonstrated that IHMT-15130 effectively reduces heart muscle thickening and suppresses inflammation, making it a potential therapeutic candidate for cardiovascular diseases.

IHMT-15130 binds covalently to the cysteine residue (Cys496) within the active site of BMX kinase with nanomolar potency (IC50 = 11.9 nM). Notably, it exhibits over 2,000 times greater selectivity for BMX compared to other kinases such as CSK, significantly minimizing off-target effects and related risks like atrial fibrillation and bleeding, which are common in less selective kinase inhibitors. This specificity marks a notable advancement in targeted therapy for inflammation-driven cardiovascular conditions.

The compound has shown remarkable efficacy in vitro by inhibiting pro-inflammatory cytokines (TNF-α, IL-6) and the NF-κB signaling pathway within endothelial cells. In mouse models induced with angiotensin II, IHMT-15130 markedly decreased left ventricular hypertrophy without detectable toxicity, highlighting its dual action in addressing both inflammation and pathological remodeling of the heart.

Published in ACS Chemical Biology, the study emphasizes IHMT-15130's potential to overcome the limitations of broad-spectrum kinase drugs, offering a safer and more effective option for treating cardiac hypertrophy caused by inflammatory processes. This research paves the way for further clinical development of this targeted therapy, which could significantly impact future cardiovascular treatments.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

New Insights into Tuberculous Meningitis: Metabolic Pathways Influence Disease Outcome

A groundbreaking study explores how metabolic pathways, especially fatty acid oxidation, influence the mortality of tuberculous meningitis, opening new avenues for targeted therapies.

How Professional Athletes Are Challenging Age Limits in Sports

Elite athletes are now competing longer and setting new age records thanks to advances in training, medical care, and nutrition. Discover how science is redefining age in sports.

UK Investigates Genetic Factors Linking Obesity Medications and Pancreatitis Risk

The UK is investigating genetic factors that may increase the risk of pancreatitis in patients using obesity drugs like Wegovy and Zepbound. Authorities are calling for reports from affected individuals to better understand this potential genetic link and ensure patient safety.