Innovative Drug IHMT-15130 Targets Heart Muscle Thickening and Inflammation

A novel compound, IHMT-15130, shows dual action in reducing heart muscle thickening and inflammation, offering new hope for cardiovascular therapies. Developed by Chinese researchers, it targets BMX kinase with high selectivity and efficacy in preclinical models.
A team of researchers led by Professor Liu Qingsong from the Hefei Institutes of Physical Science, part of the Chinese Academy of Sciences, has developed a promising new compound known as IHMT-15130. This molecule acts as a highly selective and irreversible inhibitor of BMX kinase, an enzyme critically involved in inflammatory processes and cardiac hypertrophy. Preclinical studies have demonstrated that IHMT-15130 effectively reduces heart muscle thickening and suppresses inflammation, making it a potential therapeutic candidate for cardiovascular diseases.
IHMT-15130 binds covalently to the cysteine residue (Cys496) within the active site of BMX kinase with nanomolar potency (IC50 = 11.9 nM). Notably, it exhibits over 2,000 times greater selectivity for BMX compared to other kinases such as CSK, significantly minimizing off-target effects and related risks like atrial fibrillation and bleeding, which are common in less selective kinase inhibitors. This specificity marks a notable advancement in targeted therapy for inflammation-driven cardiovascular conditions.
The compound has shown remarkable efficacy in vitro by inhibiting pro-inflammatory cytokines (TNF-α, IL-6) and the NF-κB signaling pathway within endothelial cells. In mouse models induced with angiotensin II, IHMT-15130 markedly decreased left ventricular hypertrophy without detectable toxicity, highlighting its dual action in addressing both inflammation and pathological remodeling of the heart.
Published in ACS Chemical Biology, the study emphasizes IHMT-15130's potential to overcome the limitations of broad-spectrum kinase drugs, offering a safer and more effective option for treating cardiac hypertrophy caused by inflammatory processes. This research paves the way for further clinical development of this targeted therapy, which could significantly impact future cardiovascular treatments.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
The Role of Cellular Antennas in Regulating Fat Cell Development and Obesity Prevention
New research highlights the vital role of primary cilia in fat tissue development and obesity prevention through signaling pathway regulation.
Mindfulness and Brain Stimulation Show Promise in Reducing Bladder Leaks
A groundbreaking study finds mindfulness and noninvasive brain stimulation can effectively reduce bladder leaks triggered by environmental cues, offering new hope for those affected by urinary incontinence.
How Exercise Intensity Affects Your Gut Microbiome
Recent research shows that the intensity of exercise can impact gut microbiome health, influencing athletes' performance and well-being. Discover how training load and diet affect gut bacteria in this comprehensive overview.
Exercise as a Protective Measure Against Fatty Liver Disease via Bile Acid Metabolism
New research highlights how regular aerobic exercise boosts bile acid production, aiding in the prevention of fatty liver disease by enhancing cholesterol metabolism and liver health.