Mia's Feed
Medical News & Research

Study Finds Systemic Inflammation Alone Does Not Cause Fetal Lung Damage

Study Finds Systemic Inflammation Alone Does Not Cause Fetal Lung Damage

Share this article

New research reveals that systemic inflammation during pregnancy alone may not cause fetal lung injury, emphasizing the importance of direct exposure to inflammatory stimuli in neonatal lung diseases.

2 min read

Recent research indicates that exposure to systemic inflammation during fetal development may not be sufficient to cause lung injury. A team from the Hudson Institute of Medical Research and Monash University conducted a study to investigate whether inflammation spreading throughout the fetal body could lead to lung damage, a concern often linked to preterm birth complications such as Bronchopulmonary Dysplasia (BPD). The study, published in Frontiers in Physiology, found that while systemic inflammation was successfully induced in fetal sheep models, there was no accompanying evidence of lung inflammation or structural injury. This suggests that direct contact between inflammatory stimuli and the fetal lungs might be necessary to trigger lung damage. Lead researcher Emma Vandenberg explained that these findings challenge the assumption that systemic inflammation alone prompts lung injury and highlight the importance of localized inflammation in disease development. The study’s implications are significant for understanding how prenatal infections contribute to neonatal respiratory diseases and could influence future preventative and therapeutic strategies. Fetal lung damage is a key factor in several lifelong respiratory conditions, and this research offers new insight into the mechanisms involved, possibly aiding the development of more targeted interventions to protect preterm infants from lung injuries caused by intrauterine infections.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Study Finds Watching Others Eat Can Encourage Overeating in Mice

New research presented at ENDO 2025 demonstrates that mice tend to eat more when they see others consuming tasty foods, revealing social and visual cues as factors in overeating. The study highlights the brain's reward system as a target for future obesity treatments.

Potential Risks of Branched-Chain Amino Acid Supplements on Male Fertility

Emerging research suggests that high intake of branched-chain amino acids (BCAAs), commonly used by bodybuilders, may impair male fertility by reducing sperm quality, highlighting potential health risks of supplement overuse.

A Simple Supplement May Accelerate Gut Microbiota Recovery in Newborns Post-Antibiotics

New research reveals that a simple supplement may help newborns recover gut microbiota after antibiotic use, promoting healthier immune development and reducing future infection risks.