Understanding the Formation of Wrinkles as Skin Buckles with Age

New research explains the physical process behind wrinkle formation as skin ages, highlighting how mechanical buckling contributes to skin aging and emphasizing the importance of sun protection.
As we get older, our skin undergoes significant mechanical changes, leading to the formation of wrinkles. Recent experimental research conducted by scientists at Binghamton University, part of the State University of New York, has shed light on the physical mechanisms behind these age-related skin changes. The study reveals that aging skin exhibits a tendency to stretch, contract, and buckle under pressure, creating the familiar lines and creases known as wrinkles.
The research team analyzed skin samples from individuals ranging in age from 16 to 91 years. They discovered that as skin ages, it becomes more susceptible to buckling when stretched—a process similar to how a worn-out fabric or a stretched-out hoodie behaves. The key mechanism involves the skin stretching in one direction while contracting in the perpendicular direction, a process that amplifies with age, ultimately leading to wrinkle formation.
This finding affirms long-standing theories that wrinkles develop due to mechanical changes in the skin’s structure, particularly in the dermal layer which contains collagen and elastin. Prior computational models predicted these effects, but this study provides direct experimental validation using real skin samples, marking a significant milestone in understanding skin aging.
The research highlights that the skin’s ability to stretch and contract is influenced by its mechanical properties, which degrade over time. As the skin’s lateral stretch increases with age, the tendency for buckling and wrinkle development intensifies.
Moreover, external factors such as sun exposure exacerbate skin aging. Spending prolonged periods in the sun leads to photoaging, which accelerates the mechanical degeneration of skin similar to natural aging processes. German emphasizes the importance of sun protection, especially for those who spend lots of time outdoors, to mitigate premature skin aging.
This study, titled "Elucidating the Mechanistic Process of Age Induced Human Skin Wrinkling," was published in the Journal of the Mechanical Behavior of Biomedical Materials. It aims to clarify the physical mechanisms behind wrinkle formation, aiding in the development of more effective anti-aging treatments and skincare products.
Understanding how skin buckles with age not only helps demystify the aging process but also guides better skincare choices. The findings underscore that aging skin is subject to inherent forces, which, combined with external influences, contribute to the visible signs of aging we observe as wrinkles.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Public Support for Childhood Vaccination Requirements Grows Amid Measles Outbreak
Amid a significant measles outbreak, a new survey reveals that 79% of Americans support mandatory childhood vaccinations, emphasizing public commitment to disease prevention and community health.
Breakthrough in Brain Research: Scientists Develop Comprehensive 'Whole-Brain' Organoid
Scientists at Johns Hopkins have developed a pioneering human multi-region brain organoid that models early brain development and neural network activity, providing new opportunities for studying neurological disorders and drug testing.
Discovery of PROX1 Gene as an Early Indicator of Aggressive Prostate Cancer
A groundbreaking study by the University of Michigan has identified the PROX1 gene as an early driver of aggressive, treatment-resistant prostate cancer. Targeting PROX1 with existing HDAC inhibitors may offer new therapeutic options for advanced prostate cancer patients.