Breakthrough in Regenerative Medicine: Lab-Grown Ureter Tissue from Stem Cells Signals Potential for Transplantable Kidneys

Researchers have engineered functional ureter tissue from human pluripotent stem cells, a significant advancement towards transplantable kidneys. This innovative work addresses previous limitations in kidney organoid development and opens new avenues in regenerative medicine.
Scientists at Kumamoto University have achieved a significant milestone in regenerative medicine by engineering functional ureter tissue from pluripotent stem cells. Published in Nature Communications, this pioneering work successfully produced ureteral organoids that mimic the urinary tract structure, a crucial step towards creating fully functional, transplantable kidneys.
The ureter, a key conduit for urine flow from the kidney to the bladder, has historically been absent from lab-grown kidney models, limiting their ability to replicate complete organ functions. Addressing this challenge, the team led by Professor Ryuichi Nishinakamura utilized induced ureteral stromal progenitors and ureteral epithelial components derived from mouse embryos or induced from human pluripotent stem cells. When combined, these cell types self-organized into layered, contractile ureteral structures, some exhibiting rhythmic peristaltic movements akin to natural urine transport.
Furthermore, the researchers modeled congenital urinary tract disorders by introducing TBX18 mutations, resulting in impaired tissue formation. This approach provides a valuable platform for studying developmental abnormalities and genetic diseases affecting the urinary system.
Professor Nishinakamura emphasized the novelty of this achievement: "This is the first instance of constructing a ureteral structure entirely from pluripotent stem cells. When integrated with kidney organoids, it paves the way for developing transplantable kidneys capable of urine production and excretion."
This breakthrough exemplifies international collaborative efforts aimed at advancing regenerative therapies. The development not only promises potential clinical applications but also contributes to nurturing the next generation of scientists passionate about innovative medical research.
For more details, refer to the original publication: Yutaro Ibi et al., In vitro generation of a ureteral organoid from pluripotent stem cells, Nature Communications (2025). Source: Kumamoto University.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Virtual Reality as a Promising Tool for Stroke Rehabilitation
Virtual reality shows promise as an effective tool to enhance stroke rehabilitation, improving arm movement and functional recovery through engaging, cost-effective therapy methods.
7 Essential Strategies for Overcoming Health Insurance Denials
Learn effective strategies to challenge health insurance denials and secure the coverage you deserve. These tips can help you navigate the complex appeal process and advocate for your health care needs.
Enhancing PI31 Protein Levels Offers Neuroprotection in Mouse Models
Research indicates that increasing PI31 protein levels can prevent neurodegeneration, restore neuron function, and extend lifespan in mouse models, opening new therapeutic avenues for neurodegenerative diseases.



