Mia's Feed
Medical News & Research

The Placenta's Role as a Serotonin Regulator: Implications for Fetal Development

The Placenta's Role as a Serotonin Regulator: Implications for Fetal Development

Share this article

New research from Yale uncovers the placenta's vital role as a 'serotonin shield,' regulating maternal serotonin transfer and influencing fetal growth and brain development during pregnancy.

2 min read

Recent research revises the long-held belief that the placenta produces serotonin during pregnancy. A study from Yale University reveals that rather than synthesizing serotonin, the placenta functions as a protective 'serotonin shield' that controls how much maternal serotonin reaches the developing embryo and fetus. This finding emphasizes that serotonin primarily originates from the mother, with the placenta regulating its transfer, which could have significant implications for fetal growth and brain development.

Published in the journal Endocrinology, the study uncovers that the placenta's main role is to modulate maternal serotonin levels, rather than serve as a source. Serotonin, often called the 'happiness hormone,' influences mood but also plays vital roles in growth and development. Less than 5% of serotonin is produced in the brain; most is generated in the gut and transported through the bloodstream. During pregnancy, serotonin moves into the placenta via specific proteins, such as the serotonin transporter (SERT), where it influences the development of the embryo and fetus.

The study involved analyzing purified human cytotrophoblasts—the stem cells forming the placenta—showing that serotonin accumulates in their nuclei. When researchers blocked serotonin transport with medications like the antidepressant escitalopram (Lexapro), or inhibited serotonylation (a process that attaches serotonin to proteins to influence gene expression), placental cell growth and function were significantly impaired. These results suggest that serotonin is crucial for the growth and development of placental cells, and consequently, for fetal health.

Furthermore, the research indicates that placental cells do not produce serotonin themselves, lacking the enzyme tryptophan hydroxylase (TPH-1). This underscores the importance of maternal serotonin levels, as alterations—such as those caused by medication use during pregnancy—can have downstream effects on the fetus. For example, the use of SSRIs has been associated with smaller birth sizes, whereas elevated serotonin levels might lead to larger babies with increased risk for neurodevelopmental conditions like autism.

The findings deepen understanding of placental biology and fetal development, highlighting the placenta's role as a regulator rather than a producer of serotonin. This research also builds on previous studies linking placental features, such as trophoblast inclusions, to autism risk, suggesting that maternal and placental factors contribute significantly to neurodevelopmental outcomes. Overall, these insights can inform prenatal care strategies and future research into developmental health.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Innovations in ACL Graft Techniques for Enhanced Knee Strength

Recent advancements in ACL graft processing and bioreactor cultivation aim to strengthen knee stability and reduce complications after ligament reconstruction. Learn more about this promising research from TU/e.

Accessible Imaging Technique Enhances Monitoring and Treatment of Atherosclerosis

New breakthrough using common PET imaging technology allows for improved monitoring and treatment assessment of atherosclerosis, offering hope for better cardiovascular care.

New Security Measures Proposed to Protect Brain Implant Technology

Researchers from Yale propose vital security strategies to protect advanced brain-computer interfaces from cyber threats, ensuring patient safety and data privacy amid technological evolution.

CDC Reports Rising COVID-19 Cases in 25 U.S. States

COVID-19 cases are rising in 25 states across the U.S., signaling a potential summer wave. CDC reports increased hospital visits and seasonal peaks that demand continued vigilance.