Mia's Feed
Medical News & Research

Open Source Innovation Boosts Accessibility of Medical Devices for Rare Patient Groups

Open Source Innovation Boosts Accessibility of Medical Devices for Rare Patient Groups

Share this article

The University of Twente pioneers open-source medical devices, like the 3D base plate, enhancing accessibility for small patient groups and promoting innovation in healthcare technology.

2 min read

The University of Twente has launched its first open-source medical device compliant with MDR regulations: the 3D base plate. This initiative offers an alternative pathway to develop low-risk medical devices that often lack commercial viability but still deliver significant clinical benefits.

A prime example is the 3D footplate—a diagnostic imaging tool targeting rearfoot pathologies. Designed to be produced by medical professionals at cost, this device comes with comprehensive MDR documentation available through open-source platforms, enabling easier manufacturing and regulatory compliance.

Within the Biomedical Device Design & Production group at UT (TechMed Center), efforts are underway to facilitate the availability of medical devices as open-source solutions, including necessary documentation under MDR. This approach allows healthcare providers to create devices themselves, reducing costs and administrative burdens. Although the 3D base plate is the university’s first open-source medical device, it certainly won’t be the last.

Developing and launching medical devices typically involves lengthy processes and high costs, compounded by strict regulatory requirements and the need to establish profitable business models. For devices intended for small patient groups or rare diseases, generating sufficient revenue is particularly challenging, often preventing innovative tools from reaching those who could benefit most.

The 3D footplate exemplifies such innovation. It aids in complex hindfoot pathology diagnosis by positioning the foot during CT scans to simulate clinical stress tests, providing quantitative data crucial for clinical decision-making. Its design follows a simplified, assembly-friendly approach using laser-cut parts, 3D printing, and standard components, minimizing production costs.

Most of the required MDR documentation, including risk assessments, evaluation tests, assembly instructions, and technical files, has been prepared using UT templates. This comprehensive package, which includes technical drawings and a bill of materials, is shared via open-source platforms, allowing medical centers to produce and adapt the device at cost and integrate it into their quality management systems.

This initiative marks UT's first open-source medical device, with future plans to develop additional tools under the 'Class I Medical Devices' category. Making these tools openly accessible not only increases healthcare accessibility in the Netherlands but also fosters international collaboration, especially in low- and middle-income countries, ultimately contributing to global health improvements.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Lowering Dietary Serine Can Accelerate Skin Wound Healing by Influencing Hair Follicle Stem Cells

Research indicates that reducing dietary serine can prompt hair follicle stem cells to prioritize skin repair, leading to faster wound healing. Discover how nutrient levels influence stem cell behavior and tissue regeneration.

Prevalence and Underdiagnosis of Dry Eye Disease in the General Population

Over half of the general population experiences dry eye symptoms, yet only one-fifth are diagnosed and treated, highlighting a significant healthcare gap. Learn about the prevalence, causes, and importance of early intervention in dry eye disease.

Study Shows Brain Focuses Broadly Before Narrowing to Fine Details

Research reveals that the brain initially activates broad visual categories before narrowing focus to fine details, enhancing our understanding of attention mechanisms.

Unexpected Role of Cancer-Related Gene in Pancreatic Tumor Growth

New research reveals that the cancer-fighting gene STK11 plays an unexpected role in supporting pancreatic tumor growth by regulating immune cell behavior. This discovery opens new avenues for targeted therapies against pancreatic cancer.