New Brain Imaging Technique Uncovers Hidden Vascular Changes with Age

A groundbreaking MRI technique reveals age-related increases in tiny brain vessel pulsations, offering new insights into vascular health and neurodegenerative disease risks.
Researchers at the Keck School of Medicine of USC have developed an innovative brain imaging method that provides new insights into how tiny blood vessels in the brain pulse with each heartbeat—a process that changes with age and may have implications for neurodegenerative diseases such as Alzheimer's. Published in Nature Cardiovascular Research, this pioneering noninvasive technique measures 'microvascular volumetric pulsatility,' capturing the rhythmic expansions and contractions of the brain’s smallest vessels in living humans.
Using ultra-high-field 7 Tesla MRI, the team demonstrated that microvessels exhibit increased pulsations as people age, particularly in the deep white matter regions. These areas are instrumental in connecting brain networks but are especially vulnerable to reduced blood flow from arteries that carry blood away from the heart. Excessive pulsations in these tiny vessels could disrupt brain functions, potentially accelerating memory decline and related disorders.
"Arterial pulsation functions like a natural pump, assisting fluid movement and waste clearance," explained Dr. Danny JJ Wang. "Our method allows us to observe how these vessel volumes change with age and vascular health, opening new avenues for studying brain health, dementia, and small vessel disease."
Traditionally, measuring pulsations in the brain’s smallest vessels posed significant challenges without invasive procedures used mainly in animal studies. However, this new approach combines advanced MRI techniques—vascular space occupancy (VASO) and arterial spin labeling (ASL)—to detect subtle volume fluctuations throughout the cardiac cycle. The findings confirm that older adults experience heightened pulsations in deep white matter, intensified by conditions like hypertension.
This research links microvascular health to larger vessel function and suggests that increased pulsatility may impair the brain's glymphatic system, which helps clear waste products like beta-amyloid—proteins associated with Alzheimer’s pathology. Over time, disrupted waste removal could contribute to cognitive decline.
Lead researcher Dr. Fanhua Guo emphasized the significance of in vivo measurement capabilities and mentioned ongoing efforts to adapt this technology for more accessible clinical settings, including 3 Tesla MRI scanners. Future studies aim to determine whether microvascular pulsatility can serve as an early biomarker for neurodegenerative diseases, guiding intervention and prevention strategies.
This breakthrough not only advances understanding of brain aging but also offers potential for earlier diagnosis and targeted treatments of neurovascular and neurodegenerative conditions, affecting millions worldwide.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Study Finds Most Newborns Clear HPV Infections Within Six Months
Most newborns infected with HPV naturally eliminate the virus within the first six months, providing reassurance about transmission risks and long-term health effects.
Unintentional Fall Deaths Among Adults Aged 65 and Older Reach 69.9 per 100,000 in 2023
In 2023, unintentional fall-related deaths among adults aged 65 and older reached 69.9 per 100,000, with rates increasing over time and varying across regions and demographics. Understanding these trends is crucial for effective fall prevention.
Innovative Approach Reprograms Regulatory T Cells to Combat Cancer
Scientists have developed a pioneering method to reprogram immune cells within tumors, turning them from cancer protectors into active fighters, potentially enhancing cancer immunotherapy treatments.