Mia's Feed
Medical News & Research

New Brain Imaging Technique Uncovers Hidden Vascular Changes with Age

New Brain Imaging Technique Uncovers Hidden Vascular Changes with Age

Share this article

A groundbreaking MRI technique reveals age-related increases in tiny brain vessel pulsations, offering new insights into vascular health and neurodegenerative disease risks.

2 min read

Researchers at the Keck School of Medicine of USC have developed an innovative brain imaging method that provides new insights into how tiny blood vessels in the brain pulse with each heartbeat—a process that changes with age and may have implications for neurodegenerative diseases such as Alzheimer's. Published in Nature Cardiovascular Research, this pioneering noninvasive technique measures 'microvascular volumetric pulsatility,' capturing the rhythmic expansions and contractions of the brain’s smallest vessels in living humans.

Using ultra-high-field 7 Tesla MRI, the team demonstrated that microvessels exhibit increased pulsations as people age, particularly in the deep white matter regions. These areas are instrumental in connecting brain networks but are especially vulnerable to reduced blood flow from arteries that carry blood away from the heart. Excessive pulsations in these tiny vessels could disrupt brain functions, potentially accelerating memory decline and related disorders.

"Arterial pulsation functions like a natural pump, assisting fluid movement and waste clearance," explained Dr. Danny JJ Wang. "Our method allows us to observe how these vessel volumes change with age and vascular health, opening new avenues for studying brain health, dementia, and small vessel disease."

Traditionally, measuring pulsations in the brain’s smallest vessels posed significant challenges without invasive procedures used mainly in animal studies. However, this new approach combines advanced MRI techniques—vascular space occupancy (VASO) and arterial spin labeling (ASL)—to detect subtle volume fluctuations throughout the cardiac cycle. The findings confirm that older adults experience heightened pulsations in deep white matter, intensified by conditions like hypertension.

This research links microvascular health to larger vessel function and suggests that increased pulsatility may impair the brain's glymphatic system, which helps clear waste products like beta-amyloid—proteins associated with Alzheimer’s pathology. Over time, disrupted waste removal could contribute to cognitive decline.

Lead researcher Dr. Fanhua Guo emphasized the significance of in vivo measurement capabilities and mentioned ongoing efforts to adapt this technology for more accessible clinical settings, including 3 Tesla MRI scanners. Future studies aim to determine whether microvascular pulsatility can serve as an early biomarker for neurodegenerative diseases, guiding intervention and prevention strategies.

This breakthrough not only advances understanding of brain aging but also offers potential for earlier diagnosis and targeted treatments of neurovascular and neurodegenerative conditions, affecting millions worldwide.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Michigan Reports Second Measles Outbreak Amid Rising National Cases

Michigan reports its second measles outbreak of 2025 as the US reaches over 1,200 cases nationwide. The resurgence highlights the importance of vaccination to prevent severe complications and curb outbreaks.

Innovative Digital Cognitive Test Enhances Early Detection of Alzheimer’s Disease in Primary Care

A new digital cognitive assessment developed by Lund University improves early Alzheimer’s detection in primary care, offering a fast, objective, and accessible tool to identify patients who need further testing for the disease.

New Research Finds Connection Between Oral Microbiome Diversity and Longer Sleep in Teens and Young Adults

A groundbreaking study reveals that longer sleep duration in teenagers and young adults is linked to higher oral microbiome diversity, highlighting a potential connection between sleep health and oral microbial health.

New Method Uses DNA Methylation to Accurately Predict Chronological Age Within 1.36 Years

A groundbreaking study from Hebrew University introduces a method to determine chronological age with remarkable precision using DNA methylation patterns, opening new horizons in medicine, forensics, and aging research.