New Biomarkers Uncovered for Predicting HER2+ Breast Cancer Treatment Response

Scientists have identified new biomarkers that can predict how HER2-positive breast cancers respond to therapy. This breakthrough in proteogenomic profiling paves the way for more personalized treatment strategies and better management of treatment-resistant cases.
Recent research led by Baylor College of Medicine and Harvard's Broad Institute has made significant advances in understanding how HER2-positive breast cancers respond to therapy. By using integrated proteogenomic profiling — analyzing DNA, RNA, proteins, and phosphoproteins — scientists identified two novel indicators that could predict how effectively the cancer will respond to treatment, as well as uncover new therapeutic targets for resistant cases.
This innovative approach offers a glimpse into a future where clinicians could tailor treatments based on comprehensive molecular profiles of a patient’s tumor. Such predictive power could help determine whether a patient would achieve complete remission and long-term disease-free survival with a particular therapy, or if alternative strategies are necessary.
The study, published in Cell Reports Medicine, emphasizes that proteogenomics enhances the discovery of meaningful biomarkers and reveals mechanisms underlying drug resistance. Co-author Dr. Meenakshi Anurag highlights that incorporating proteomics data improves understanding of protein signaling pathways, potentially guiding more effective personalized treatments.
First author Dr. Eric Jaehnig explains that analyzing tumor samples before therapy can significantly influence clinical decisions, reducing ineffective treatments and improving outcomes. The research builds upon data from the CALGB 40601 trial, which involved 305 patients receiving various HER2-targeted therapies. Previously, studies focused on DNA and RNA markers to predict response, but this new study adds protein and phosphoprotein insights, identifying certain pathways like EMT and WNT-beta catenin as associated with non-response.
The researchers pinpointed two proteins, GPRC5A and TPBG, as biomarkers linked to poor treatment response through meta-analysis across multiple datasets. These cell surface proteins have potential as targets for new therapies, especially in resistant HER2+ breast cancers.
Overall, this research underscores the importance of proteogenomics in advancing precision medicine, enabling better prediction of treatment responses and identifying novel targets within resistant tumors. The long-term goal is to integrate such molecular profiling into routine clinical practice, leading to more effective and individualized cancer care.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Canadian Cannabis Use Slightly Rises While Misuse Declines Post-Legalization
Research shows a slight increase in cannabis use and a decrease in misuse among Canadian adults post-legalization, highlighting the impact of regulatory policies.
Double Lung Transplant Offers New Hope for Mother and Twin Children
A groundbreaking double lung transplant in Chicago offers new hope for a mother with advanced lung cancer, highlighting advancements in transplant medicine and cancer treatment.
The Limitations of Objective Pain Measurement Technologies
Exploring the challenges and philosophical considerations behind emerging objective pain measurement technologies, and their implications for pain management.
US Sees Slight Increase in Measles Cases as New Outbreak Reported in Colorado
Recent CDC data shows a slight rise in measles cases across the U.S., with new outbreaks in Colorado and Texas highlighting the importance of vaccination and vigilance against this highly contagious virus.