Neural Cells Assist Tumor Spread by Transferring Mitochondria to Cancer Cells

New research uncovers how neurons contribute to cancer progression by transferring mitochondria, enhancing tumor energy and metastatic potential, opening new avenues for treatment.
Recent groundbreaking research from the University of South Alabama reveals a surprising role of neurons in cancer progression. The study demonstrates that neurons can directly transfer mitochondria to nearby cancer cells, effectively boosting their energy production and metastatic potential. This intercellular transfer is a novel mechanism through which tumors may enhance their growth and spread.
For years, oncologists have observed that tumors situated among dense nerve networks tend to grow faster and metastasize more extensively. While previous studies suggested that nerves could influence tumor growth, the exact processes behind this remained unclear. This new research sheds light on a direct cellular interaction: neurons, not just passive players, actively donate functional mitochondria to cancer cells.
Using advanced lineage-tracing techniques and fluorescently tagged mitochondria, scientists tracked the transfer of these energy-producing organelles from neurons to tumor cells in mouse models of breast cancer. They found that neurons send mitochondria through tunneling nanotubes—tiny cellular bridges—that reach out to cancer cells. Once inside, these healthy mitochondria restore damaged oxidative phosphorylation pathways, allowing cancer cells to grow independently of external nutrients and resist oxidative stress.
Further experiments involved chemically disabling nerve inputs around tumors using botulinum neurotoxin A. Genes related to mitochondrial function and metabolism were significantly downregulated in denervated tumors, which also showed reduced invasion and growth. This indicates that nerve activity actively supports tumor energetics and progression.
The transfer of mitochondria was associated with increased ATP levels, better redox balance, and enhanced survival of cancer cells under mechanical and oxidative stress, especially during metastasis. Notably, cells receiving neuronal mitochondria were more likely to colonize distant sites such as the brain and liver, highlighting the transfer's role in metastatic success.
The findings suggest that cancer may manipulate neural connections to obtain essential bioenergetic support. While the precise signaling pathways are still being explored, the evidence points toward a tumor-driven process where cancer cells recruit neurons to supply mitochondria, rather than neurons independently sensing and responding to tumor stress.
Implications from this research propose that disrupting nerve-to-tumor mitochondrial transfer could serve as a novel therapeutic strategy to limit cancer growth and metastasis. By targeting nerve inputs or the transfer pathways, it might be possible to starve tumors of vital energy sources, impeding their ability to invade and spread.
As this field advances, further studies are necessary to develop targeted interventions. Nonetheless, these findings introduce an exciting new dimension to understanding tumor-nerve interactions and open promising avenues for future cancer treatments.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Targeting a Single Gene Shows Promise in Reversing Cognitive Challenges in 22q11.2 Deletion Syndrome
New research highlights how reducing EMC10 protein levels could restore brain function and improve cognition in models of 22q11.2 Deletion Syndrome, opening doors for targeted therapies.
Targeted Payment Reforms May Address the Shortage of Infectious Disease Physicians
New CMS payment strategies aim to combat the shortage of infectious disease physicians by increasing reimbursements and incentivizing practice in underserved areas. Learn how targeted reforms could strengthen the infectious disease workforce.
Potential Health Risks from Metals in Ultrasonic Cigarettes
New research highlights health risks associated with ultrasonic cigarettes, revealing elevated levels of toxic metals in their liquids and aerosols that could pose serious long-term health dangers. Learn about the potential risks of this emerging vaping technology.
Innovative Foam Treatment Offers Rapid Relief for Itching and Persistent Scalp Psoriasis
A new foam formulation of roflumilast shows rapid itch relief and significant clearance of scalp and body psoriasis lesions in a clinical trial, offering a promising treatment option for patients with challenging psoriasis.