Key Mechanism Identified That Shields SARS-CoV-2 During Replication

Researchers have identified a vital mechanism that SARS-CoV-2 uses to protect its spike protein during replication, offering new targets for antiviral therapies and vaccine development.
Scientists from the Texas Biomedical Research Institute and the University of Chicago have uncovered a crucial mechanism that SARS-CoV-2, the virus responsible for COVID-19, employs to protect itself inside host cells during replication. This protective strategy involves the formation of dense protein complexes around the virus's spike protein, which safeguards it as the virus assembles and prepares to infect new cells. Without this mechanism—specifically the formation of structures called "3a dense bodies" or 3DBs—the virus's ability to infect would be significantly hampered.
The research, published in Nature Communications, highlights the role of the accessory protein ORF3a in assembling these protective complexes. ORF3a drives the creation of 3DBs, which act like a security detail surrounding the spike protein, preventing it from being damaged during transit. When ORF3a is absent, these protective complexes fail to form, leading to damaged spike proteins and a subsequent decrease in viral infectivity. This discovery not only enhances our understanding of the virus's replication process but also points to possible new targets for antiviral drugs and vaccines.
Further investigations showed that related coronaviruses in bats and pangolins also form 3DB-like structures, though interestingly, viruses from civets—an intermediate host during earlier outbreaks—do not. This variation may partly explain differences in transmission efficiencies among coronavirus strains, such as the lower infectivity of the original SARS virus compared to SARS-CoV-2.
The collaborative effort combined expertise in cellular biology, microscopy, and virology, enabling the team to engineer versions of the virus lacking the ability to form 3DBs. Moving forward, researchers aim to explore what causes the spike protein to break apart when unprotected, as well as how mutations in the ORF3a gene among different variants impact the formation of these protective structures and the virus's infectivity.
This breakthrough provides valuable insights into the virus’s defense mechanisms and opens new avenues for therapeutic intervention, potentially aiding in the development of more effective treatments and vaccines against COVID-19.
Source: https://medicalxpress.com/news/2025-06-critical-covid-infection-virus-shields.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Enhancing Implantable Medical Device Batteries with Anode Modification Increases Energy by 20%
Innovative anode modifications have increased the energy capacity of implantable medical device batteries by 20%, promising longer-lasting and safer implantable devices. Discover how atomic-level engineering is transforming medical battery technology.
Innovative Long-Acting HIV Prevention Shot Nearing Regulatory Approval
A new long-acting HIV prevention injection, lenacapavir, is nearing FDA approval. It promises to improve adherence with biannual dosing and could significantly impact HIV prevention efforts in the US and globally.
Study Confirms Safety of Shorter Radiation Therapy Post-Prostate Surgery
New research shows that delivering radiation therapy in just five sessions after prostate surgery is safe and yields similar outcomes to traditional longer treatments, improving patient convenience.