Innovative Technique Tracks Cancer Cell Evolution from a Single Tissue Sample

A new method from DKFZ researchers enables the reconstruction of cancer cell evolution from a single tissue sample, opening new possibilities for early detection and intervention in cancer development.
Researchers at the German Cancer Research Center (DKFZ) have developed a groundbreaking method that enables the reconstruction of cancer cell evolution from just a single tissue sample. This innovative approach allows scientists to trace the development of cancer over time, providing insights into how malignant tumors emerge and grow. Understanding the history of cancer cell proliferation could be pivotal for early detection and intervention, potentially intercepting the disease before it fully manifests.
Cancer does not typically develop overnight; it often takes decades for genetic alterations to accumulate and transform healthy cells into malignant ones. The new technique, named SCIFER, leverages the natural accumulation of mutations within individual cells to map their evolutionary history. By analyzing spontaneous genomic changes—mutations that occur constantly—researchers can identify patterns that reveal when cancer-promoting mutations occurred and how quickly pre-cancerous clones expand.
This method was validated through collaboration with hematologist Paresh Vyas and his team at the University of Oxford, who provided bone marrow samples from healthy individuals. The ability to detect early, aggressively growing cell clusters could significantly enhance early cancer diagnostics.
The study highlights that mutations in oncogenes—genes that have the potential to promote cancer—are far more common than previously believed. Interestingly, not all activated oncogenes lead to cancer; some cells harboring these mutations survive and multiply without becoming malignant, thanks to the body's protective mechanisms. Cancer typically requires multiple genetic changes and environmental factors, such as inflammation, to progress.
Looking ahead, the researchers aim to identify the biological factors that propel cells with activated oncogenes toward malignancy and those that hinder this process. The ultimate goal is to develop strategies for early intervention, preventing cancer from fully developing.
This pioneering research opens new avenues for understanding cellular evolution within the human body and could lead to more effective early detection methods, especially for blood cancers like myelodysplastic syndrome and leukemia. With continued advancements, the team envisions tools to intervene in the earliest stages of cancer development, reducing the burden of this disease.
Source: https://medicalxpress.com/news/2025-07-method-cancer-cell-evolution-tissue.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Unraveling the Role of DISC1 Protein in Schizophrenia and Mental Disorders
New studies highlight the crucial role of the DISC1 protein in mental health, revealing how its misfolding and aggregation may contribute to schizophrenia and other psychiatric disorders. Emerging therapies aim to prevent this protein malfunction, paving the way for targeted treatments.
Research Reveals Fatty Liver Is Common in People with Type 2 Diabetes, But Severe Liver Damage Remains Rare
New research indicates that fatty liver disease is highly prevalent among individuals with type 2 diabetes, yet severe liver damage remains uncommon. Early detection and weight loss are key to prevention.
Study Highlights the Importance of Ethnicity in Hypertension Treatment
A new study reveals the critical role of ethnicity in tailoring hypertension treatments, promising improved effectiveness for diverse populations. Learn how personalized medicine is transforming blood pressure management.
Study Shows Pulmonary Vein Isolation with Pulsed Field Ablation Similar in Effectiveness to Radiofrequency Ablation for Paroxysmal Atrial Fibrillation
A new study at ESC Congress 2025 shows that pulsed field ablation offers similar effectiveness to radiofrequency ablation for paroxysmal atrial fibrillation, with shorter procedure times and fewer complications.



