Innovative Technique Tracks Cancer Cell Evolution from a Single Tissue Sample

A new method from DKFZ researchers enables the reconstruction of cancer cell evolution from a single tissue sample, opening new possibilities for early detection and intervention in cancer development.
Researchers at the German Cancer Research Center (DKFZ) have developed a groundbreaking method that enables the reconstruction of cancer cell evolution from just a single tissue sample. This innovative approach allows scientists to trace the development of cancer over time, providing insights into how malignant tumors emerge and grow. Understanding the history of cancer cell proliferation could be pivotal for early detection and intervention, potentially intercepting the disease before it fully manifests.
Cancer does not typically develop overnight; it often takes decades for genetic alterations to accumulate and transform healthy cells into malignant ones. The new technique, named SCIFER, leverages the natural accumulation of mutations within individual cells to map their evolutionary history. By analyzing spontaneous genomic changes—mutations that occur constantly—researchers can identify patterns that reveal when cancer-promoting mutations occurred and how quickly pre-cancerous clones expand.
This method was validated through collaboration with hematologist Paresh Vyas and his team at the University of Oxford, who provided bone marrow samples from healthy individuals. The ability to detect early, aggressively growing cell clusters could significantly enhance early cancer diagnostics.
The study highlights that mutations in oncogenes—genes that have the potential to promote cancer—are far more common than previously believed. Interestingly, not all activated oncogenes lead to cancer; some cells harboring these mutations survive and multiply without becoming malignant, thanks to the body's protective mechanisms. Cancer typically requires multiple genetic changes and environmental factors, such as inflammation, to progress.
Looking ahead, the researchers aim to identify the biological factors that propel cells with activated oncogenes toward malignancy and those that hinder this process. The ultimate goal is to develop strategies for early intervention, preventing cancer from fully developing.
This pioneering research opens new avenues for understanding cellular evolution within the human body and could lead to more effective early detection methods, especially for blood cancers like myelodysplastic syndrome and leukemia. With continued advancements, the team envisions tools to intervene in the earliest stages of cancer development, reducing the burden of this disease.
Source: https://medicalxpress.com/news/2025-07-method-cancer-cell-evolution-tissue.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
How Walking 7,000 Steps Daily May Lower Your Cancer Risk
A large UK study shows that walking at least 7,000 steps daily can significantly reduce the risk of developing various types of cancer. Regular movement, even at light intensity, plays a vital role in cancer prevention.
Artificial Intelligence Improves Diagnostic Precision for High-Risk Thyroid Nodules
A new deep learning model combining ultrasound techniques significantly improves the accuracy of diagnosing high-risk thyroid nodules, aiding clinicians in early and precise detection of thyroid cancer.
Persistent Challenges of Low Birthweight in Certain Indian States Despite Overall Decline
Despite overall progress in reducing low birthweight rates across India, certain states still experience high prevalence, highlighting ongoing maternal and neonatal health disparities.
Innovative AI-Driven Development of Broad-Spectrum Coronavirus Antiviral Drugs
Harvard scientists utilize AI-enabled modeling to develop broad-spectrum antiviral drugs targeting coronaviruses, promising rapid and effective pandemic responses.