Mia's Feed
Medical News & Research

Innovative 'Cellular Bridges' Offer Hope for Spinal Cord Injury Repair

Innovative 'Cellular Bridges' Offer Hope for Spinal Cord Injury Repair

Share this article

2 min read

Recent groundbreaking research highlights a novel approach to spinal cord injury (SCI) treatment by harnessing the regenerative potential of pericytes—tiny cells within the body's blood vessels. Scientists have discovered that introducing a specific growth factor, PDGF-BB, to the injury site prompts pericytes to transform, forming 'cellular bridges' that facilitate nerve regeneration. This process leads to the growth of new axons, the nerve fibers responsible for transmitting signals, which can result in restored movement and reduced pain in animal models.

In experiments with adult mice, a single injection of PDGF-BB at the injury site after seven days initiated significant axon regrowth and functional recovery, including improved hind limb coordination and decreased sensitivity to stimuli. These structural changes were associated with the formation of pericyte-derived bridges across the lesion, enabling nerve fibers to bypass damaged tissues.

Further studies revealed that pericytes respond to PDGF-BB by altering their shape and secreting molecules like fibronectin that promote tissue repair. Culturing mouse neurons on human pericytes exposed to PDGF-BB demonstrated similar growth-promoting effects, indicating potential for translational applications.

Importantly, PDGF-BB treatment also appeared to lessen inflammation and preserve the fundamental features of pericytes, avoiding conversion into harmful cell types. This comprehensive regeneration approach suggests that restoring blood vessel integrity and nerve pathways simultaneously is crucial for effective SCI recovery.

The findings open new pathways for therapeutic strategies, combining vascular and neural regeneration methods. Future research aims to optimize treatment timing, dosage, and delivery systems, moving closer to clinical applications that could significantly improve outcomes for individuals with spinal cord injuries.

Source: https://medicalxpress.com/news/2025-04-cellular-bridges-spinal-cord-injury.html

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

How Statistical Models Are Advancing the Fight Against Neglected Tropical Diseases in Migrant Populations

Discover how advanced statistical modeling is transforming the detection and management of neglected tropical diseases among migrant populations, improving early diagnosis and targeted interventions.

Reevaluating the Cancer Risk of GLP-1 Receptor Agonists: What the Latest Research Shows

Recent studies suggest GLP-1 receptor agonists may lower overall cancer risk, but the evidence is mixed regarding specific cancers like kidney cancer. Learn about the latest findings and their implications for health.

Impact of Chemotherapy on the Brain's Circadian Rhythms

Chemotherapy can disrupt the brain's circadian rhythms, leading to sleep disturbances and increased side effects in cancer patients. Recent research reveals that drugs like paclitaxel may impair the molecular and behavioral functions of the brain's biological clock, emphasizing the importance of circadian management during treatment.

Surgical Ablation During CABG Linked to Improved Survival in Patients with Atrial Fibrillation

New research highlights that performing surgical ablation during CABG significantly boosts survival rates in patients with atrial fibrillation, emphasizing the need for guideline adherence.