Innovative Biomaterial Demonstrates Potential to Reverse Heart Aging

A new hybrid biomaterial developed by researchers shows promise in reversing age-related changes in heart tissue by targeting the extracellular matrix, opening new possibilities for regenerative therapies.
Recent advancements in regenerative medicine have revealed promising insights into combating cardiac aging. Researchers from the National University of Singapore have developed a pioneering lab-grown hybrid biomaterial called DECIPHER, which closely mimics the heart's extracellular matrix (ECM) to study its role in aging. The ECM—comprising proteins and biochemical signals—surrounds heart cells, providing structural support and guiding cellular functions. As the heart ages, the ECM becomes stiffer and undergoes compositional changes that negatively impact cell health, leading to scarring and reduced cardiac performance.
The team, led by Assistant Professor Jennifer Young, utilized DECIPHER to independently control the physical stiffness and biochemical cues of the ECM, allowing for precise analysis of their effects on heart cells. Experiments demonstrated that when aged heart cells were placed on scaffolds mimicking youthful biochemical signals, they reverted to a healthier, more functional state—even if the scaffold remained stiff. Conversely, young cells exhibited dysfunction when exposed to aged ECM cues, regardless of scaffold stiffness.
This research highlights that biochemical signals in the ECM have a more significant impact on cell aging than physical stiffness alone. The findings suggest that restoring youthful biochemical environments could be a viable strategy to reverse some age-related cardiac damage. Furthermore, the DECIPHER platform offers potential to investigate other tissues affected by aging, as changes in tissue stiffness and biochemical composition are common in various age-related diseases like fibrosis and cancer.
While still in the experimental phase, this groundbreaking approach opens new avenues for therapies focused on modifying the tissue environment to preserve or restore heart function during aging. The methodology could also be adapted for broader biomedical research, targeting tissue-specific aging and disease processes across the body.
Source: https://medicalxpress.com/news/2025-06-hybrid-biomaterial-aging-heart-reversed.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Identification of a Crucial Neuron Group in the Amygdala Linked to Anxiety and Social Disorders
A groundbreaking study Identifies a specific group of neurons in the amygdala that influence anxiety, depression, and social behavior, opening new possibilities for targeted treatments of mental health disorders.
Children with Chronic Health Conditions at Increased Risk of Food Insecurity, New Study Finds
A new study highlights that children with chronic health conditions are at a higher risk of experiencing food insecurity, emphasizing the need for targeted interventions to support vulnerable families.
Discovery of Two Proteins That Could Enable Safer Cancer Therapies
Researchers identify two proteins, MLF2 and RBM15, that regulate chromatin remodeling, paving the way for less toxic and more effective cancer treatments. Discover how gene regulation impacts cancer development and future therapies.
New Insights into Memory Storage: How Bats Replay Flight Paths in Neural Packets
Research reveals how bats replay flight paths through neural sequences, offering new clues into memory storage and planning mechanisms in the brain.



