Innovative Fusion Superkine and Focused Ultrasound Offer New Hope for Glioblastoma Treatment

Innovative fusion superkine combined with focused ultrasound offers a promising noninvasive therapy for glioblastoma, targeting tumor cells and boosting immune response through advanced delivery techniques.
Researchers at VCU Massey Comprehensive Cancer Center and the VCU Institute of Molecular Medicine (VIMM) have developed a groundbreaking approach to combat glioblastoma (GBM), one of the most aggressive and deadly brain cancers with no current cure. This innovative strategy combines a novel fusion superkine (FSK), which includes dual therapeutic cytokines, with advanced focused ultrasound technology to deliver the treatment safely across the blood-brain barrier (BBB). The FSK integrates two potent molecules: a next-generation IL-24S (superkine) that induces tumor cell death, and IL-15, which activates important immune cells, enhancing the immune response against cancer cells. In preclinical studies involving glioblastoma models, this combination has demonstrated superior tumor regression and increased survival rates compared to individual cytokines, inspiring hope for more effective treatments.
The delivery method involves creating an adenovirus vector expressing the FSK, which is then transported into the brain using focused ultrasound and microbubbles (FUS-DMB). This technique temporarily and safely opens the BBB, allowing the therapeutic virus to reach tumor sites without invasive surgery—a significant advancement in brain cancer therapy. The researchers aim to expand this approach into clinical trials by 2026, with the goal of providing a noninvasive option for treating primary and secondary brain tumors.
This research marks a significant milestone in immunotherapy and virotherapy fields, addressing the challenges of drug delivery and immune suppression typical of GBM. Experts believe this technology could revolutionize how brain tumors are treated by not only destroying existing tumors but also fostering a long-lasting immune response to prevent recurrence. As the team continues to refine their methods, future studies will explore the potential applications across various tumor types, aiming to ultimately improve patient outcomes worldwide.
Source: https://medicalxpress.com/news/2025-06-fusion-superkine-focused-ultrasound-enable.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Pregnancy Exposure to Fine Particulate Matter Might Elevate Childhood Obesity Risk
A large European study links prenatal exposure to fine particulate matter (PM2.5) with a higher risk of childhood overweight and obesity, especially during ages 9 to 12. The research highlights pregnancy as a critical period of vulnerability to air pollution's long-term health effects.
Mouth to Gut Bacteria Migration: Uncovering Why Smoking May Protect Against Inflamed Bowels
A recent study reveals how smoking promotes mouth bacteria to migrate into the gut, triggering immune responses that may protect against ulcerative colitis. Discover how this mechanism could lead to new, safer treatments for inflammatory bowel disease.
Genetic Activity Offers Neuroprotection Against ALS in Specific Motor Neurons
Researchers uncover how certain nerve cells resist ALS damage through specific gene activity, offering hope for new therapies targeting neuronal protection. Source: https://medicalxpress.com/news/2025-08-gene-shields-nerve-cells-als.html
Brain Region Size and Its Link to Future Weight Gain in Youth Facing Financial Hardship
Research shows that smaller reward-processing brain regions in adolescents facing financial hardship can precede weight gain, highlighting the importance of early intervention for at-risk youth.