Innovative Cyclic Disulfide Lipids Show Promise in Halting Cancer Growth in Mice

Nagoya University researchers have created cyclic disulfide lipids that dramatically enhance mRNA delivery, showing promise in stopping tumor growth in mice and advancing cancer vaccine development.
Researchers at Nagoya University in Japan have developed a novel lipid nanoparticle technology that significantly improves the delivery of messenger RNA (mRNA) into cells. By incorporating a cyclic disulfide structure—a sulfur-rich ring—into lipid molecules, they achieved a fivefold increase in mRNA delivery efficiency. This enhancement allows more genetic instructions to escape the cellular endosomes, which are typically barriers that trap and degrade mRNA before it can exert its function.
The advanced delivery system was tested as a cancer vaccine in mice, where it successfully suppressed tumor growth. The study, published in RSC Medicinal Chemistry, marks the first successful in vivo use of cyclic disulfide-containing lipids to enhance mRNA transport and therapeutic outcomes.
The process involves formulating lipids that self-assemble into spherical nanoparticles encapsulating the mRNA. These nanocarriers protect the mRNA and facilitate its escape from endosomes—small intracellular compartments that often hinder delivery. The cyclic disulfide bonds enable the lipids to break free from these traps, ensuring the mRNA reaches the cytoplasm where it can instruct cells to produce antigens, thereby activating immune responses.
The research team tested different formulations, including the standard MC3 and SM102 lipids used in medical and COVID-19 vaccines. By adding the cyclic disulfide lipids, they observed notable improvements in cellular uptake, escape from endosomes, immune activation, and reduction in tumor growth in animal models.
This promising development could boost the effectiveness of mRNA-based therapies and vaccines, especially for hard-to-treat conditions like cancer. However, researchers caution that further studies are needed to assess safety and optimize delivery methods before clinical application. Dr. Seigo Kimura emphasized that this is a significant step forward, demonstrating that disulfide chemistry can be successfully applied in live organisms for therapeutic purposes.
Overall, this innovative approach opens new avenues for improving genetic medicine and cancer immunotherapy using chemically engineered lipid nanoparticles.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Call for Updated Guidelines on Detecting Fabricated or Induced Illness in Children
Recent research advocates for updated guidelines on identifying fabricated or induced illness in children to prevent misdiagnosis and unnecessary family trauma, highlighting the rarity of FII-related deaths in England.
Children Born to Fathers Who Smoked During Puberty May Experience Accelerated Aging
New research suggests that men who start smoking during puberty may pass on accelerated biological aging to their children, highlighting the importance of tobacco prevention in adolescence.
Maryland Reports First Human West Nile Virus Case of the Year
Maryland has confirmed its first human case of West Nile virus for the year, urging residents to take preventive measures against mosquito bites during this high-risk season.



