Mia's Feed
Medical News & Research

Innovative CRISPR Technique Shows Promise for Treating Childhood Brain Disorder

Innovative CRISPR Technique Shows Promise for Treating Childhood Brain Disorder

Share this article

Scientists at UCSF have used a novel CRISPR activation technique to restore brain function in mouse models of childhood neural disorder, offering hope for future treatments of similar human conditions.

2 min read

Early brain development issues can have lifelong impacts, particularly in conditions like SCN2A haploinsufficiency, where children are born with only one functioning copy of the SCN2A gene. This genetic deficiency leads to impaired synapse development, communication problems between brain cells, and common symptoms such as speech delays and seizures.

Recently, researchers at the University of California, San Francisco, utilized the gene-editing technology CRISPR to address these challenges in mouse models engineered to carry the same mutation found in humans. Instead of editing the defective gene, they increased the activity of the healthy copy, effectively boosting SCN2A protein levels.

Remarkably, the treatment was successful in mice roughly equivalent in age to 10-year-old children, suggesting that brain plasticity persists beyond early development and that intervention remains effective. The enhanced SCN2A expression helped reestablish normal synapse function, improved neural signaling, and prevented seizures.

This approach employs CRISPRa, a variant of CRISPR that activates gene expression without altering DNA sequences. Developed over a decade ago, CRISPRa can compensate for gene shortages by amplifying the remaining healthy gene copies. The UCSF team’s work builds on previous successes, such as using CRISPRa to treat obesity in mice.

SCN2A haploinsufficiency is associated with epilepsy, autism spectrum disorders, and neurodevelopmental delays due to faulty brain cell signaling. By increasing SCN2A levels, the researchers restored neural communication and reduced symptoms in mice models. The method was effective whether delivered directly into the brain or via bloodstream injections.

Safety assessments showed that increasing SCN2A did not harm the animals with normal gene copies, highlighting its therapeutic potential. This breakthrough raises hopes for future treatments that could significantly improve the quality of life for children affected by this severe genetic disorder.

The research is detailed in the journal Nature, emphasizing the promising role of gene activation therapies in pediatric neurogenetics. As this technology advances, it may lead to effective interventions allowing children to develop speech, learn, and live more independent lives.

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Understanding What Attracts Mosquitoes to You

Discover the surprising factors that make some people more attractive to mosquitoes, including recent alcohol, drug use, and sunscreen application, based on a unique festival study.

Understanding the Rise of DNA Testing by Australian Health Insurers

Australian health insurers are now providing DNA tests to predict individual responses to medications, raising important questions about data security, ethical use, and future health screening. Learn what you need to know about this emerging trend.

New Theory Highlights the Critical Role of Cortex Layer 6b in Attention and Higher Mental Functions

Scientists propose a groundbreaking theory that identifies cortex layer 6b as a key player in attention and advanced mental functions, opening new avenues for understanding cognition and neuropsychiatric disorders.