Revolutionizing Brain Function Understanding: Astrocytes as Active Players in Neuromodulation

New research reveals astrocytes are active participants in brain neuromodulation, influencing neuron activity and behavior through biochemical pathways, offering new insights into brain function and potential therapies.
Recent groundbreaking research has challenged the long-held belief that astrocytes, a type of glial cell in the brain, merely support neuronal functions. Published in Science, this study reveals that astrocytes are actively involved in regulating neuron activity and brain behavior through complex biochemical pathways.
In 2019, scientists from Janelia discovered that radial astrocytes in zebrafish influence behavior by signaling neurons to cease swimming during non-productive efforts — a crucial survival mechanism. They identified norepinephrine release from neurons as the trigger for astrocyte calcium surges, leading to subsequent communication. However, the question remained: how do astrocytes send signals back to neurons?
The new study answers this by showing that activated astrocytes release ATP into the extracellular space, which is then broken down into adenosine. This adenosine interacts with neuronal receptors, ultimately modulating neuronal activity to produce behavioral changes like giving up. Interestingly, blocking ATP receptors had no effect on behavior, but inhibiting adenosine receptors suppressed the giving-up response, indicating that the pathway involves ATP breakdown into adenosine rather than direct ATP-neuron interaction.
This biochemical signaling pathway suggests a slower, more adaptable form of neuromodulation compared to fast-acting neuronal circuits. The findings imply that enzymes responsible for ATP breakdown could be promising therapeutic targets, especially for psychiatric conditions.
Moreover, similar pathways have been observed in other species, including mice and flies, hinting at an evolutionary conserved mechanism. Companion studies in brain regions like the hippocampus reinforce the importance of astrocytes in neuromodulation, influencing communication between neurons and overall brain function.
Understanding how astrocytes participate in neuromodulatory processes opens new avenues for research and potential treatments of neurological and psychiatric disorders, emphasizing the importance of non-neuronal cells in brain activity and health.
Source: medicalxpress.com
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Availability of Updated COVID-19 Vaccines Varies by State in 2025
Several U.S. states are expanding access to the updated COVID-19 vaccines in 2025, ensuring broader availability amid federal regulatory challenges and changing recommendations.
Advanced Near-Infrared Spectroscopy Enhances Screening for Sickle Cell Disease Progression
New research utilizing near-infrared spectroscopy offers a noninvasive, reliable method to monitor cerebral small vessel disease progression in adults with sickle cell disease, improving early detection and management.
How Sleep Deprivation Alters Brain Function, Increasing Cravings and Risk of Weight Gain
Sleep deprivation rewires brain circuits involved in hunger and reward, leading to increased cravings and higher risk of weight gain. Prioritizing quality sleep is essential for metabolic health and appetite regulation.



