Mia's Feed
Medical News & Research

Advancements in 3D Bioprinting of Brain Vessels Mimic Human Blood Flow Dynamics

Advancements in 3D Bioprinting of Brain Vessels Mimic Human Blood Flow Dynamics

Share this article

A novel 3D bioprinting approach creates realistic brain vessel models to study blood flow patterns and cerebrovascular diseases, opening new horizons in disease research and treatment strategies.

2 min read

Researchers from Pusan National University, in collaboration with scientists from POSTECH, have developed a groundbreaking 3D bioprinted model that replicates the complex blood flow patterns within human brain vessels. This innovative platform offers new possibilities for studying cerebrovascular diseases such as stroke and atherosclerosis, which are major causes of global health burden. Traditional in vitro models often fall short in accurately mimicking the structural and hemodynamic conditions within cerebral blood vessels, limiting our understanding of disease mechanisms.

To address this, the team employed a novel embedded coaxial bioprinting technique, creating perfusable vascular conduits with precise luminal narrowing that simulate stenotic conditions. Their bioink, composed of porcine aorta-derived decellularized extracellular matrix (dECM), collagen, and alginate, provided the necessary mechanical strength and biological cues for endothelial cell attachment and function.

The bioprinted vessels incorporated human endothelial cells from sources such as umbilical veins and brain microvascular cells, and were subjected to flow conditions that mimic both healthy and diseased states. Computational simulations confirmed disturbed flow patterns in stenotic regions, analogous to those observed in atherosclerosis. Remarkably, endothelial cells exhibited proper junction expression and maintained barrier integrity while showing heightened inflammatory responses under abnormal flow, closely resembling in vivo pathology.

This technological advance not only permits precise modeling of cerebrovascular conditions but also reduces reliance on animal testing and enhances drug screening capabilities. Future enhancements may include integrating brain-specific extracellular matrices, co-culturing supporting cell types, and utilizing patient-derived cells for personalized medicine applications. Such developments could significantly improve our ability to study vascular inflammation, develop targeted therapies, and ultimately impact the treatment of stroke and other cerebrovascular diseases.

Source: https://medicalxpress.com/news/2025-08-3d-brain-vessels-replicate-human.html

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Molecular Stress in Aging Neurons Heightens Risk of Neurodegenerative Diseases

Recent research reveals that molecular stress in aging neurons increases their vulnerability to neurodegenerative diseases, paving the way for new therapeutic strategies.

Many Physicians Would Consider Assisted Dying for Themselves in Cases of Advanced Illness

An international survey shows that over half of doctors would consider assisted dying if faced with advanced cancer or Alzheimer's, influenced by legislation and personal beliefs.

Long-Term Growth of Stem Cell-Derived Liver Organoids Enhanced by Bile Acid Support

Japanese researchers have developed long-term growing liver organoids from human stem cells enhanced by bile acid support, opening new possibilities for liver disease research and therapy.

Mobile Health Intervention Shows Promise in Enhancing Quality of Life for Traumatic Brain Injury Caregivers

A new mobile app-based intervention developed by University of Michigan shows promising results in improving quality of life for caregivers of traumatic brain injury patients by promoting self-care and lifestyle adjustments.