Advancements in 3D Bioprinting of Brain Vessels Mimic Human Blood Flow Dynamics

A novel 3D bioprinting approach creates realistic brain vessel models to study blood flow patterns and cerebrovascular diseases, opening new horizons in disease research and treatment strategies.
Researchers from Pusan National University, in collaboration with scientists from POSTECH, have developed a groundbreaking 3D bioprinted model that replicates the complex blood flow patterns within human brain vessels. This innovative platform offers new possibilities for studying cerebrovascular diseases such as stroke and atherosclerosis, which are major causes of global health burden. Traditional in vitro models often fall short in accurately mimicking the structural and hemodynamic conditions within cerebral blood vessels, limiting our understanding of disease mechanisms.
To address this, the team employed a novel embedded coaxial bioprinting technique, creating perfusable vascular conduits with precise luminal narrowing that simulate stenotic conditions. Their bioink, composed of porcine aorta-derived decellularized extracellular matrix (dECM), collagen, and alginate, provided the necessary mechanical strength and biological cues for endothelial cell attachment and function.
The bioprinted vessels incorporated human endothelial cells from sources such as umbilical veins and brain microvascular cells, and were subjected to flow conditions that mimic both healthy and diseased states. Computational simulations confirmed disturbed flow patterns in stenotic regions, analogous to those observed in atherosclerosis. Remarkably, endothelial cells exhibited proper junction expression and maintained barrier integrity while showing heightened inflammatory responses under abnormal flow, closely resembling in vivo pathology.
This technological advance not only permits precise modeling of cerebrovascular conditions but also reduces reliance on animal testing and enhances drug screening capabilities. Future enhancements may include integrating brain-specific extracellular matrices, co-culturing supporting cell types, and utilizing patient-derived cells for personalized medicine applications. Such developments could significantly improve our ability to study vascular inflammation, develop targeted therapies, and ultimately impact the treatment of stroke and other cerebrovascular diseases.
Source: https://medicalxpress.com/news/2025-08-3d-brain-vessels-replicate-human.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Comprehensive Overview of Breast Cancer Care in Ethiopia: Diagnosis, Treatment, and Survivorship Support
Discover how Ethiopia is advancing breast cancer diagnosis, treatment, and culturally tailored psychosocial support to improve patient survivorship outcomes.
A Universal Sleep Pattern May Enhance Memory Formation and Separation
New research suggests that a universal sleep pattern involving non-REM and REM stages enhances memory formation and separation, with implications for cognitive health.
Innovative Genomics Tool Guides Immunotherapy Decisions for Advanced Kidney Cancer
A novel genomics-based tool developed by researchers guides personalized immunotherapy choices for patients with advanced and aggressive kidney cancers, improving treatment outcomes based on tumor immune profiling.



