Innovative Approach Targets Non-Cancerous Cells to Combat Ovarian Cancer Resistance

Recent research reveals that targeting non-cancerous cells within ovarian tumors, specifically through NNMT inhibition, can overcome resistance and boost immunotherapy success. A promising new approach for treating ovarian cancer.
A groundbreaking study published in Nature by researchers from the University of Chicago has unveiled a novel strategy to address the persistent challenge of ovarian cancer treatment resistance. The team focused on the role of non-cancerous cells within the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), which are known to support tumor growth and suppress immune responses. Unlike the cancer cells themselves, CAFs do not mutate, making them a more stable and potentially more targetable component.
The researchers identified that the enzyme nicotinamide N-methyl transferase (NNMT), highly expressed in CAFs, plays a pivotal role in transforming normal fibroblasts into tumor-promoting cells. NNMT promotes immune evasion by secreting complement proteins that facilitate the conversion of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit T cell activity and aid tumor progression. Building on previous findings, the team developed a potent NNMT inhibitor that effectively halted this process.
In preclinical models, this NNMT inhibitor not only reduced tumor burden but also restored immune function. Remarkably, when combined with immune checkpoint inhibitors, the treatment successfully stopped tumor growth, highlighting a promising combination therapy. This approach emphasizes the importance of targeting the tumor microenvironment, specifically non-cancerous cells, to overcome therapy resistance in ovarian cancer.
Overall, this research suggests that inhibiting NNMT in CAFs offers a new avenue to enhance immunotherapy efficacy and improve outcomes for patients with this aggressive cancer. The findings advocate for further clinical studies to explore NNMT inhibitors as a part of integrated treatment strategies. For more details, source: https://medicalxpress.com/news/2025-07-cancerous-cells-ovarian-cancer-resistance.html.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
BlurryScope: An Affordable, AI-Driven Microscope Revolutionizing Cancer Diagnostics
UCLA researchers have introduced BlurryScope, a cost-effective, AI-powered microscope that uses motion-blurred images for rapid and accurate HER2 cancer diagnostics, making advanced pathology accessible worldwide.
Study Finds Over-the-Counter Contraceptive Pills Significantly Improve Access to Birth Control
A recent study demonstrates that OTC birth control pills significantly improve access to contraception, especially for underserved populations, enhancing reproductive autonomy and reducing barriers to care.
Protein DNM1 Identified as Key Regulator in Ovarian Cancer Metastasis
Research identifies the protein DNM1 as a key regulator of ovarian cancer metastasis, offering new avenues for targeted therapy. Elevated DNM1 levels promote tumor spread by enhancing cell mobility via N-cadherin recycling, presenting promising treatment strategies.



