Innovative Approach Targets Non-Cancerous Cells to Combat Ovarian Cancer Resistance

Recent research reveals that targeting non-cancerous cells within ovarian tumors, specifically through NNMT inhibition, can overcome resistance and boost immunotherapy success. A promising new approach for treating ovarian cancer.
A groundbreaking study published in Nature by researchers from the University of Chicago has unveiled a novel strategy to address the persistent challenge of ovarian cancer treatment resistance. The team focused on the role of non-cancerous cells within the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), which are known to support tumor growth and suppress immune responses. Unlike the cancer cells themselves, CAFs do not mutate, making them a more stable and potentially more targetable component.
The researchers identified that the enzyme nicotinamide N-methyl transferase (NNMT), highly expressed in CAFs, plays a pivotal role in transforming normal fibroblasts into tumor-promoting cells. NNMT promotes immune evasion by secreting complement proteins that facilitate the conversion of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit T cell activity and aid tumor progression. Building on previous findings, the team developed a potent NNMT inhibitor that effectively halted this process.
In preclinical models, this NNMT inhibitor not only reduced tumor burden but also restored immune function. Remarkably, when combined with immune checkpoint inhibitors, the treatment successfully stopped tumor growth, highlighting a promising combination therapy. This approach emphasizes the importance of targeting the tumor microenvironment, specifically non-cancerous cells, to overcome therapy resistance in ovarian cancer.
Overall, this research suggests that inhibiting NNMT in CAFs offers a new avenue to enhance immunotherapy efficacy and improve outcomes for patients with this aggressive cancer. The findings advocate for further clinical studies to explore NNMT inhibitors as a part of integrated treatment strategies. For more details, source: https://medicalxpress.com/news/2025-07-cancerous-cells-ovarian-cancer-resistance.html.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Concerns Over US Policy Shift to Multiple Vaccinations Instead of Single MMRV
A US CDC recommendation to separate childhood vaccines for measles, mumps, rubella, and chickenpox has raised concerns among experts about public confusion and vaccination gaps, risking outbreaks of preventable diseases.
Genetic Testing Enhances Personalization of Weight-Loss Treatments
Mayo Clinic introduces a genetic test that predicts individual responses to weight-loss medications, paving the way for personalized obesity therapies based on biological insights.
Can Diet Influence Blood Pressure During Pregnancy? Saliva Testing Reveals New Insights
Recent studies reveal that chemical exposures from food packaging and additives may influence hormone regulation during pregnancy, potentially increasing the risk of hypertension. Saliva testing offers a noninvasive method to monitor environmental impacts on maternal health and preeclampsia risk.



