Innovative Approach Targets Non-Cancerous Cells to Combat Ovarian Cancer Resistance

Recent research reveals that targeting non-cancerous cells within ovarian tumors, specifically through NNMT inhibition, can overcome resistance and boost immunotherapy success. A promising new approach for treating ovarian cancer.
A groundbreaking study published in Nature by researchers from the University of Chicago has unveiled a novel strategy to address the persistent challenge of ovarian cancer treatment resistance. The team focused on the role of non-cancerous cells within the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), which are known to support tumor growth and suppress immune responses. Unlike the cancer cells themselves, CAFs do not mutate, making them a more stable and potentially more targetable component.
The researchers identified that the enzyme nicotinamide N-methyl transferase (NNMT), highly expressed in CAFs, plays a pivotal role in transforming normal fibroblasts into tumor-promoting cells. NNMT promotes immune evasion by secreting complement proteins that facilitate the conversion of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit T cell activity and aid tumor progression. Building on previous findings, the team developed a potent NNMT inhibitor that effectively halted this process.
In preclinical models, this NNMT inhibitor not only reduced tumor burden but also restored immune function. Remarkably, when combined with immune checkpoint inhibitors, the treatment successfully stopped tumor growth, highlighting a promising combination therapy. This approach emphasizes the importance of targeting the tumor microenvironment, specifically non-cancerous cells, to overcome therapy resistance in ovarian cancer.
Overall, this research suggests that inhibiting NNMT in CAFs offers a new avenue to enhance immunotherapy efficacy and improve outcomes for patients with this aggressive cancer. The findings advocate for further clinical studies to explore NNMT inhibitors as a part of integrated treatment strategies. For more details, source: https://medicalxpress.com/news/2025-07-cancerous-cells-ovarian-cancer-resistance.html.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Native American Communities Face Medicaid Enrollment Challenges Amid New Work Requirements
Native American communities are at risk of healthcare coverage disruptions as new Medicaid work and eligibility requirements are implemented, highlighting ongoing procedural challenges and the importance of policy vigilance.
Sleep Disorders as Potential Early Signs of Neurodegenerative Diseases
Emerging research links sleep disorders like REM Sleep Behavior Disorder (RBD) to the early development of neurodegenerative diseases such as Parkinson's and Lewy body dementia, offering promising avenues for early diagnosis and intervention.
Natural Compound in Rice and Coffee May Aid in Relaxing Heart Arteries
Research reveals that ferulic acid, a natural compound found in rice and coffee, may help relax heart arteries and prevent spasms, offering new possibilities for cardiovascular health support.
Discovery of Protein Switch for Regulating Viral and Autoimmune Immune Responses Offers Therapeutic Potential
Scientists have uncovered a vital protein switch involving SLIRP that controls immune responses to viruses and autoimmune diseases, highlighting new therapeutic possibilities for immune regulation.