Mia's Feed
Medical News & Research

Pretrained Machine Learning Models Enhance Diagnosis of Nonmelanoma Skin Cancer in Low-Resource Settings

Pretrained Machine Learning Models Enhance Diagnosis of Nonmelanoma Skin Cancer in Low-Resource Settings

Share this article

2 min read

Advancements in artificial intelligence are opening new horizons in the detection of nonmelanoma skin cancers (NMSC), especially in areas with limited medical resources. A recent study presented at the AACR 2025 Annual Meeting highlights how pretrained machine learning models, also known as foundation models, can significantly improve the accuracy and accessibility of skin cancer diagnosis.

The research team from the University of Chicago Medical Center evaluated three state-of-the-art foundation models—PRISM, UNI, and Prov-GigaPath—in analyzing digital pathology images of skin lesions. These models work by breaking down high-resolution tissue images into smaller tiles, extracting relevant features, and calculating the likelihood of the presence of NMSC. The study involved 2,130 tissue images from 553 patients in Bangladesh, a population with heightened risk for NMSC due to arsenic exposure from contaminated water.

Results demonstrated that all three foundation models outperformed traditional models like ResNet18, achieving accuracy rates of over 90%. Specifically, PRISM correctly identified NMSC in 92.5% of cases, UNI in 91.3%, and Prov-GigaPath in 90.8%, compared to 80.5% with ResNet18. Simplified versions of these models, requiring less computational power and analysis, still maintained high accuracy, proving their potential for deployment in resource-constrained environments.

Additionally, the researchers developed an innovative annotation framework that leverages small sets of biopsy images to highlight suspect regions on tissue slides. This approach aids clinicians by directing attention to areas most likely to contain cancerous tissue without needing extensive training data.

Despite these promising results, the study acknowledged limitations, such as its focus on a Bangladeshi cohort, which may affect the generalizability of the findings. Practical challenges, including digital pathology infrastructure and integration into clinical workflows, need further exploration before widespread implementation.

Overall, this research suggests that pretrained machine learning models can serve as effective, low-resource tools to assist in diagnosing NMSC globally, particularly where specialist expertise and equipment are scarce. Future work will aim to validate these models across diverse populations and address logistical aspects of real-world deployment, bringing us closer to more equitable skin cancer diagnosis.

Source: https://medicalxpress.com/news/2025-04-pretrained-machine-nonmelanoma-skin-cancer.html

Stay Updated with Mia's Feed

Get the latest health & wellness insights delivered straight to your inbox.

How often would you like updates?

We respect your privacy. Unsubscribe at any time.

Related Articles

Obesity Modifies Long-Term Impact of COVID-19 in Primate Research

A recent study reveals that obesity significantly influences the long-term effects of COVID-19 in primates, highlighting the potential for persistent health issues even after mild infection. The research emphasizes the complex role of metabolic health in long COVID symptoms.

Innovative Technique Enables Long-Term Brain Activity Monitoring in Freely Moving Mice

A novel method, CaliAli, enables researchers to monitor neuronal activity in freely moving mice continuously for over 99 days, advancing long-term brain research and understanding of neurological disorders.

Ethnic Variations in Breast Cancer Risks and Outcomes Highlight the Need for Personalized Screening and Treatment

New research highlights ethnic differences in breast cancer development and outcomes, emphasizing the need for personalized screening and treatment approaches to ensure equitable healthcare for all populations.

Innovative Approach Predicts Resistance to Bowel Cancer Treatments, Aiding Development of Smarter Drugs

Researchers from London have developed a groundbreaking tool that predicts how bowel cancer cells develop resistance to treatment, paving the way for personalized and more effective therapies. This innovation could significantly improve long-term outcomes for patients with this common cancer.