Elevated Alzheimer's Biomarker Detected in Newborns: A Closer Look at Phosphorylated Tau

New research reveals that newborns naturally have high levels of a key Alzheimer's biomarker, p-tau217, which may play a crucial role in brain development and offer insights for future Alzheimer's treatments.
Recent research has uncovered that newborn babies exhibit higher levels of a biomarker associated with Alzheimer's disease, called phosphorylated tau (p-tau217). This discovery was made through a comprehensive international study involving researchers from Sweden, Spain, and Australia, analyzing blood samples from over 400 individuals including healthy newborns, premature infants, young adults, and Alzheimer's patients.
The study revealed that newborns, especially premature ones, possess the highest plasma levels of p-tau217, which gradually decrease within the first few months of life to reach levels comparable to adults. Interestingly, in Alzheimer’s disease, elevated p-tau217 levels are linked to pathological tau aggregation that leads to neurofibrillary tangles and cognitive decline. Conversely, in newborns, the increase appears to play a role in healthy brain development, aiding in neuron growth and the formation of neural connections.
The research further indicates that in early life, p-tau217 levels are closely related to the timing of birth, with more premature infants showing higher levels. This challenges previous assumptions and suggests that tau phosphorylation might have a protective or developmental function during early brain maturation.
Scientists believe understanding how the healthy brain manages tau protein could inform new therapeutic approaches for Alzheimer’s. The dual role of p-tau217 underscores its importance: while it signals disease progression in older individuals, it might be a vital factor in normal brain development in infants. Plasma p-tau217 has recently gained FDA approval as a diagnostic tool for Alzheimer’s, but the new findings highlight the necessity to interpret its levels within a broader developmental context.
These insights open potential pathways to designing treatments that could leverage the brain's natural protective mechanisms against tau pathology, potentially slowing or halting the progression of Alzheimer’s disease. Further research aims to decipher why tau regulation deteriorates with age and how this knowledge can shape future interventions.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Expert Consensus Highlights Urgent Need for Standardized Chemosensory Testing in Healthcare
A new white paper calls for standardization and integration of chemosensory testing into routine healthcare to improve early diagnosis and patient outcomes, following the 2023 TUCT conference supported by leading health institutions.
Innovative AI App Uses Fingernail Photos for Anemia Screening
A novel AI-powered smartphone app uses fingernail photos to accurately screen for anemia, improving accessibility and early detection across communities. Developed by Chapman University, this technology offers a noninvasive, scalable solution for hemoglobin monitoring.
Research Finds BMI to Be an Unreliable Predictor of Future Health Risks
A groundbreaking study from the University of Florida reveals that Body Mass Index (BMI) is an unreliable measure for predicting long-term health risks, advocating instead for direct body fat measurement techniques like bioelectrical impedance analysis.