Decoding Sentence Construction in the Brain: Insights from Electrocorticography Research

New research using electrocorticography reveals how the brain assembles sentences, highlighting the roles of different brain regions in sequencing and syntax during speech production.
Recent scientific research has advanced our understanding of how the human brain constructs sentences, shedding light on the neural dynamics involved in language production. Published in Communications Psychology, a study led by researchers from NYU, including Associate Professor Adeen Flinker and Postdoctoral Researcher Adam Morgan, employed high-resolution electrocorticography (ECoG) to directly observe brain activity during speech.
While traditional studies have focused on single-word tasks, this research explored how the brain manages the more complex process of producing full sentences. Participants, undergoing epilepsy treatment, performed tasks involving naming isolated words and describing scenes using complete sentences. The researchers analyzed the neural patterns associated with six words when spoken alone and tracked these patterns as the same words were integrated into sentences.
Findings demonstrate that the cortical areas responsible for encoding individual words remain consistent across different tasks. However, the sequencing and syntactic management of these words involve distinct brain regions, notably the prefrontal cortex. In sensorimotor regions, activity closely followed the order of spoken words, while in the prefrontal cortex—particularly the inferior and middle frontal gyri—words were encoded based on their grammatical roles within the sentence, such as subject or object.
The study further revealed that during the production of passive constructions, such as "Frankenstein was hit by Dracula," the prefrontal cortex sustains activity for both nouns throughout the sentence. This parallel and sustained encoding indicates that constructing more complex sentence structures engages additional working memory resources, emphasizing the dynamic and flexible nature of speech production.
These findings align with linguistic theories that most languages favor subject-before-object orders, possibly due to neural efficiency. Processing passive or less common structures appears to require more cognitive effort, influencing language evolution over time.
Overall, this research offers a nuanced view of the cortical processes underlying sentence formation, illustrating that speech production involves a sophisticated interplay between stable word representations and the dynamic syntactic structuring dictated by grammatical demands.
For more details, see the full study by Adam M. Morgan et al., DOI: 10.1038/s44271-025-00270-1, published in Communications Psychology. Source: https://medicalxpress.com/news/2025-06-syntax-brain-sentences-word.html
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
Artificial Intelligence Enhances Early Detection of Breast Tumors in Screening Programs
Artificial intelligence improves early detection of breast tumors in screening programs, surpassing traditional radiologist reviews and promising better patient outcomes.
Combination Therapy Shows Promise and Safety for Specific Genetic Types of Acute Myeloid Leukemia
New clinical research indicates that combining standard AML treatment with targeted drugs like revumenib offers high remission rates and safety for patients with specific genetic mutations, paving the way for personalized therapy approaches.
Stem Cell Research from ALS Patients Reveals New Potential Treatment Target
Innovative research using stem cells from ALS patients uncovers a new cellular stress pathway that could serve as a promising target for future therapies, offering hope for more effective treatments for this devastating disease.
Innovative Once-Weekly Pill Shows Promise for Schizophrenia Treatment
A groundbreaking once-weekly oral medication for schizophrenia shows promising results in clinical trials, offering a new approach to improve treatment adherence and symptom management.



